
Elastic Data Streams in Pravega for
Serverless Computing

http://pravega.io

Raúl Gracia, Pravega by DellEMC

WOSCx, 2022

Serverless Computing & Streams: A Great Match

• Serverless frameworks allow us to trigger functions in response to events:
• Popular approach to deliver a reactive programming.
• Great deal of abstraction from underlying infrastructure.
• Simplified programming model for users.

• Data Streams are a continuous source of events.
• Ideal source of input for Serverless computing frameworks.
• First-class citizen abstraction for many use-cases (i.e., like object or file).
• Streaming storage systems need to deal with several challenges (write/read guarantees, parallelism, etc.).

• Several examples of messaging/streaming systems as a source for serverless frameworks:
• Kafka connector for OpenWhisk:

• https://github.com/apache/openwhisk-package-kafka
• Kafka event source for AWS Lambda:

• https://docs.aws.amazon.com/lambda/latest/dg/with-kafka.html

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

https://github.com/apache/openwhisk-package-kafka
https://docs.aws.amazon.com/lambda/latest/dg/with-kafka.html

Real Streaming Use-cases
• Many real streaming use cases can benefit from the Serverless computing:

• Dell is delivering Knative service on APEX Private Cloud.
• https://infohub.delltechnologies.com/p/serverless-workload-and-apex-private-cloud

• Drone images:
• Analyze cattle health.
• Inspect airplanes between flights.
• Correctness of building construction process.

• Video analytics:
• Storage of surveillance cameras.
• Real-time identification of objects.

• Factory sensors:
• Anomaly detection in manufacturing.
• …

Dell Streaming Data Platform
(Streaming storage + analytics product by Dell)

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

https://infohub.delltechnologies.com/p/serverless-workload-and-apex-private-cloud

Pravega: A Storage System for
Unbounded Data Streams

http://pravega.io

Pravega Concepts I: Streams & Clients

• Pravega is an open-source storage system to
store/serve unbounded data streams.

• Stream: Unbounded sequence of bytes.
• Append-only abstraction (but can be truncated).

• Clients: Operate on Streams.
• Writer: writer.writeEvent(message)
• Reader: reader.readNextEvent(timeout)

Pravega
ReaderWriter

Stream s1

e0e1e2

Stream s1

e2 e1 e0e0e1e2

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

Pravega Concepts II: Stream Segments

• Pravega splits Streams into segments:
• Basic unit of storage for Pravega.

• A Stream can be seen as a sequence
of segments.

• State of segments:
• Open segment: Events are being

appended.
• Sealed segment: Read-only.

e0e1e2
e3e4e5

Sealed segments

ReaderWriter

Stream s1

e6e7e8

Stream s1

e8 e7 e6

Pravega

e6e7e8

Open segment

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

Pravega Tiered Storage

• Open segments are durably written to Tier 1:
• Low write-to-read latency (real time analytics).
• Write Ahead Log (e.g., Apache Bookkeeper).
• WAL is only read to recover from failures.

• Segments are asynchronously stored in Tier 2:
• High throughput (batch analytics).
• Pluggable: HDFS, Amazon S3, DellEMC ECS/Isilon.

• Sweet spot in latency vs throughput trade-off.

Reader

e8

Pravega

e6e7

Active segment

1) Write to log & ack writer

2) Cache & serve read

3) Async write events in Tier 2

Writer

Stream s1

e0e1e2

Open segment

2) Cache & serve reads Stream s1

e2 e1 e0

e0e1e2

Tier 2 storageTier 1: WAL

e2 e1 e0

e0e1e2

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

Write/Read Parallelism

• A Stream may have multiple open segments.

• Write guarantees:
• Exactly-once: No event duplicates (e.g., on

reconnections).
• All events written to a routing key will be read

in the same order as they were written.

• Read guarantees:
• All the events from a set of Streams will be read

by only one reader in a group of readers.
• Application support for reader recovery:

Consistent information of reader positions.

e6

Writer(s)

e7e8

Stream s1

e5e4e3

Tier 2 storageTier 1: WAL

Se
rv

er
 3

Se
rv

er
 2

Se
rv

er
 1

e0e1e2

e3e4e5

e0e1e2

w1
w2
w3

e6e7e8

Stream s1

e3e4e5

e0e1e2

r1

r2
r3

Control Plane
(Controller instances)

Data Plane
(Pravega servers)

Pravega

e6e7e8 Reader(s)

Parallel open
segments

writer.writeEvent(routingKey, message)

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

Why Pravega?

• Unlimited retention:
• Stream segments can be stored in Tier 2 forever.

• Unified storage primitive:
• Sweet spot in latency vs throughput trade-off: copes with both real-time/batch analytics.

• Data durability:
• Data is durably stored in both tiers.

• Parallelism:
• Multiple readers and writers may read/write on the same stream in parallel.

• Guarantees for data processing:
• Exactly-once semantics.
• Consistent event ordering (enforced via writer routing key).

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

Stream Autoscaling in Pravega

http://pravega.io

Data Streams: Workload Variations

• Load in a data stream
may be dynamic.

• Load peaks, daily patterns.

• Ideally, Stream parallelism
should vary accordingly.

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

Stream Auto-Scaling

• Dynamic number of
Segments per Stream.

• Defined via a Stream policy.

• Pravega tracks the load
per-segment.

• It triggers up/down scale
events.

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

Stream Auto-Scaling

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

Split eventMerge event

Serverless & Stream Auto-scaling

http://pravega.io

What’s Next? Connecting the Dots

• Serverless frameworks take scale up/down compute instances:
• Usually, such decisions are based on resource metrics (e.g., CPU).

• Pravega Stream parallelism: software-based metric to scale upon.

• Goal: exploit the dynamic parallelism of Pravega Streams for scaling
Serverless instances.
• # of Segments on a Stream as a complementary metric to make scaling decisions.

• Success story of Pravega and Apache Flink:
• Dynamically scale the parallelism of a Flink job based on the number of Segments on

a Pravega Stream.

S0

S1

S2

S3

S4

S5

S6

S7

S8

t0 t1 t2 t3

Stream Segments along time

Serverless compute instances along time

@PravegaProjecthttps://github.com/pravega/pravegahttps://pravega-io.slack.com

Thanks for your attention!
Q&A

http://pravega.io

